martes, 9 de octubre de 2012

BANDA ISM

BANDA ISM
Las bandas ISM (Industrial Scientific Medical) son bandas de radiofrecuencia electromagnética reservadas internacionalmente para uso no comercial en áreas de trabajo industriales, científicas y médicas. Estas bandas pueden utilizarse sin necesidad de licencia siempre que se respeten unos determinados límites de potencia.

Fueron definidas por la ITU (International Telecomunications Union) en el artículo 5 de las Regulaciones de Radio (RR 5.138, 5.150 y 5.280) y todo aparato que trabaje con ellas debe ser tolerante a errores y utilizar mecanismos de protección contra interferencias, como técnicas de ensanchado de espectro (RR 15.13). Por este motivo, las redes que funcionan en esta banda se les denominan redes de espectro ensanchado.

Algunos aparatos que usan la frecuencia de 2,4 GHz son los microondas, teléfonos inalámbricos, monitores de bebés, IEEE 802.15.1 (WPAN - Bluetooth) e IEEE 802.11 (WLAN)...

Además de utilizarse diferentes técnicas de espectro ensanchado, en función de la relación señal/ruido se puede utilizar una modulación (bits por símbolo) más o menos rica para alcanzar más velocidad, por lo que los aparatos realizan una negociación de velocidades.

Según la zona geográfica, en la banda de los 2.4GHz se utilizan de 7 a 14 canales (13 en Europa). El ancho de banda de la señal (22MHz) es superior a la separación entre canales consecutivos (5MHz), por eso se hace necesaria una separación de al menos 5 canales con el fin de evitar interferencias entre celdas adyacentes. Tradicionalmente se utilizan los canales 1, 6 y 11 o los canales 1, 5, 9 y 13. 

                                              


Para ampliar un poco más el conocimiento sobre estas bandas es bueno conocer que son los Espectros Ensanchados.

El espectro ensanchado (también llamado espectro esparcido, espectro disperso, spread spectrum o SS) es una técnica de modulación empleada en telecomunicaciones para la transmisión de datos digitales y por radiofrecuencia.

El fundamento básico es el "ensanchamiento" de la señal a transmitir a lo largo de una banda muy ancha de frecuencias, mucho más amplia, de hecho, que el ancho de banda mínimo requerido para transmitir la información que se quiere enviar. No se puede decir que las comunicaciones mediante espectro ensanchado son medios eficientes de utilización del ancho de banda. Sin embargo, rinden al máximo cuando se los combina con sistemas existentes que hacen uso de la frecuencia. La señal de espectro ensanchado, una vez ensanchada puede coexistir con señales en banda estrecha, ya que sólo les aportan un pequeño incremento en el ruido. En lo que se refiere al receptor de espectro ensanchado, él no ve las señales de banda estrecha, ya que está escuchando un ancho de banda mucho más amplio gracias a una secuencia de código preestablecido.

La traducción del inglés spread spectrum se hace con distintos adjetivos según las fuentes; pueden emplearse indistintamente espectro ensanchado, expandido, desparramado, difuso o disperso para referirse en todos los casos al mismo concepto.
Podemos concluir diciendo que todos los sistemas de espectro ensanchado satisfacen dos criterios:
  • El ancho de banda de la señal que se va a transmitir es mucho mayor que el ancho de banda de la señal original.
  • El ancho de banda transmitido se determina mediante alguna función independiente del mensaje y conocida por el receptor.

ALGUNOS APARATOS QUE TRABAJAN EN LAS BANDAS ISM

BLUETOOTH: Debido a que la banda ISM está abierta a cualquiera, el sistema de radio Bluetooth deberá estar preparado para evitar las múltiples interferencias que se pudieran producir. Éstas pueden ser evitadas utilizando un sistema que busque una parte no utilizada del espectro o un sistema de salto de frecuencia. En los sistemas de radio Bluetooth se suele utilizar el método de salto de frecuencia debido a que ésta tecnología puede ser integrada en equipos de baja potencia y bajo coste. Éste sistema divide la banda de frecuencia en varios canales de salto, donde, los transceptores, durante la conexión van cambiando de uno a otro canal de salto de manera pseudo-aleatoria. Con esto se consigue que el ancho de banda instantáneo sea muy pequeño y también una propagación efectiva sobre el total de ancho de banda. En conclusión, con el sistema FH (Salto de frecuencia), se pueden conseguir transceptores de banda estrecha con una gran inmunidad a las interferencias.

Inmunidad a las interferencias

Como se mencionó anteriormente Bluetooth opera en una banda de frecuencia que está sujeta a considerables interferencias, por lo que el sistema ha sido optimizado para evitar éstas interferencias. En este caso La técnica de salto de frecuencia es aplicada a una alta velocidad y una corta longitud de los paquetes (1600 saltos/segundo, para slots-simples). Los paquetes de datos están protegido por un esquema ARQ (repetición automática de consulta), en el cual los paquetes perdidos son automáticamente retransmitidos, aun así, con este sistema, si un paquete de datos no llegase a su destino, sólo una pequeña parte de la información se perdería. La voz no se retransmite nunca, sin embargo, se utiliza un esquema de codificación muy robusto. Éste esquema, que está basado en una modulación variable de declive delta (CSVD), que sigue la forma de la onda de audio y es muy resistente a los errores de bits. Estos errores son percibidos como ruido de fondo, que se intensifica si los errores aumentan.

Definición de canal

Como hemos comentado, Bluetooth utiliza un sistema FH/TDD (salto de frecuencia/división de tiempo duplex), en el que el canal queda dividido en intervalos de 625 µs, llamados slots, donde cada salto de frecuencia es ocupado por un slot. Esto da lugar a una frecuencia de salto de 1600 veces por segundo, en la que un paquete de datos ocupa ocupar un slot para la emisión y otro para la recepción y que pueden ser usados alternativamente, dando lugar a un esquema de tipo TDD.


Dos o más unidades Bluetooth pueden compartir el mismo canal dentro de una piconet , donde una unidad actúa como maestra, controlando el tráfico de datos en la piconet que se genera entre las demás unidades, donde estas actúan como esclavas, enviando y recibiendo señales hacia el maestro. El salto de frecuencia del canal está determinado por la secuencia de la señal, es decir, el orden en que llegan los saltos y por la fase de ésta secuencia. En Bluetooth, la secuencia queda fijada por la identidad de la unidad maestra de la piconet (un código único para cada equipo), y por su frecuencia de reloj. Por lo que, para que una unidad esclava pueda sincronizarse con una unidad maestra, ésta primera debe añadir un ajuste a su propio reloj nativo y así poder compartir la misma portadora de salto.


En países donde la banda está abierta a 80 canales o más, espaciados todos ellos a 1 Mhz., se han definido 79 saltos de portadora, y en aquellos donde la banda es más estrecha se han definido 23 saltos.

TELEFONO INALAMBRICO: Un teléfono inalámbrico es básicamente un aparato de radio que se conecta sin cables a una base, que a su vez está conectada a la red telefónica local (fija). Generalmente tiene un rango de 100 metros o menos de su estación base y funcionan en las frecuencias de 900 MHz en América Latina y Europa, en la frecuencia de los 2,4 GHz, 5,8 GHz y actualmente 1,9 GHz con la tecnología DECT.
FRECUENCIAS EN LAS QUE TRABAJAN: En los Estados Unidos, se usan 7 frecuencias asignadas por la Comisión Federal de Comunicaciones (FCC), estas son:
  • 1,7 MHz (Hasta 6 canales, Sistema AM)
  • 27 MHz (asignada en 1980, hasta 10 canales, Sistema FM)
  • 43–50 MHz (asignada en 1986, hasta 25 canales, Sistema FM)
  • 900 MHz (902–928 MHz) (asignada en 1990)
  • 1,9 GHz (1920-1930 MHz) (desarrollada en 1993 y asignada en Estados Unidos en octubre de 2005)
  • 2,4 GHz (asignada en 1998)
  • 5,8 GHz (asignada en 2003)
Actualmente todos los teléfonos vendidos en los Estados Unidos usan las bandas de 900 MHz, 2,4 GHz y 5,8 Jhs.
En Europa la mayoría de proveedores usan las bandas de 900 MHz y 1800 MHz La GSM-900 es la más ampliamente usada. Pocos operadores usan la DCS-1800 o la GSM-1800. Se necesita un teléfono de banda dual 900/1800 para ser compatible con casi todos los operadores. Al menos se debe soportar la banda GSM-900 para ser compatible con muchos operadores.


ZIGBEE : ZigBee es el nombre de la especificación de un conjunto de protocolos de alto nivel de comunicación inalámbrica para su utilización con radiodifusión digital de bajo consumo, basada en el estándar IEEE 802.15.4 de redes inalámbricas de área personal (wireless personal area network, WPAN). Su objetivo son las aplicaciones que requieren comunicaciones seguras con baja tasa de envío de datos y maximización de la vida útil de sus baterías.
En principio, el ámbito donde se prevé que esta tecnología cobre más fuerza es en domótica, como puede verse en los documentos de la ZigBee Alliance, en las referencias bibliográficas que se dan más abajo en el documento «ZigBee y Domótica». La razón de ello son diversas características que lo diferencian de otras tecnologías:
  • Su bajo consumo.
  • Su topología de red en malla.
  • Su fácil integración (se pueden fabricar nodos con muy poca electrónica).

ZIGBEE VS BLUETOOTH:
ZigBee es muy similar al Bluetooth pero con algunas diferencias:
  • Una red ZigBee puede constar de un máximo de 65535 nodos distribuidos en subredes de 255 nodos, frente a los 8 máximos de una subred (Piconet) Bluetooth.
  • Menor consumo eléctrico que el de Bluetooth. En términos exactos, ZigBee tiene un consumo de 30 mA transmitiendo y de 3 uA en reposo, frente a los 40 mA transmitiendo y 0,2 mA en reposo que tiene el Bluetooth. Este menor consumo se debe a que el sistema ZigBee se queda la mayor parte del tiempo dormido, mientras que en una comunicación Bluetooth esto no se puede dar, y siempre se está transmitiendo y/o recibiendo.
  • Tiene una velocidad de hasta 250 kbps, mientras que en Bluetooth es de hasta 3 Mbps.
  • Debido a las velocidades de cada uno, uno es más apropiado que el otro para ciertas cosas. Por ejemplo, mientras que el Bluetooth se usa para aplicaciones como los teléfonos móviles y la informática casera, la velocidad del ZigBee se hace insuficiente para estas tareas, desviándolo a usos tales como la Domótica, los productos dependientes de la batería, los sensores médicos, y en artículos de juguetería, en los cuales la transferencia de datos es menor.
  • Existe una versión que integra el sistema de radiofrecuencias característico de Bluetooth junto a una interfaz de transmisión de datos vía infrarrojos desarrollado por IBM mediante un protocolo ADSI y MDSI.







No hay comentarios:

Publicar un comentario